UNIVERSIDAD DE BARCELONA

En el trabajo, publicado en Nature, participan investigadores de la Universidad de Barcelona

Internet, las redes sociales y muchos de los sistemas biológicos son redes reales dinámicas que crecen gracias a que sus elementos se conectan entre ellos. Por ejemplo, cuando una persona decide apuntarse a una red social, como Facebook, está creando un nuevo elemento de la red, también llamado nodo, y debe elegir con qué otros elementos de los que ya participan se conectará. Esta elección determina la estructura de la red, que está íntimamente relacionada con su funcionalidad y comportamiento.

Un trabajo publicado hoy en Nature, en el que han participado investigadores de la Universidad de Barcelona, desarrolla un modelo que muestra que, además de la popularidad, la similitud es también un factor determinante en el crecimiento de las redes, tal como explica , investigador de la Facultad de Física de la UB y uno de los autores del estudio: «Nuestro modelo combina popularidad y similitud. Los modelos anteriores, en cambio, se basan en uno de los dos aspectos por separado y generan redes poco realistas porque los dos ingredientes son fundamentales».

La popularidad de un nodo se mide por el número de conexiones que tiene, como el número de amigos en Facebook. Esta es una manera de codificar en el lenguaje de las redes el concepto que todos tenemos en mente: ser popular es ser reconocido por la mayoría en algún aspecto. En las redes, la popularidad se traduce en «más conectividad». Este principio se aplica habitualmente para el crecimiento de redes complejas dentro del concepto de conexión preferencial, en el que se sugiere que, cuanto más conectado está un nodo, más probable es que reciba nuevos enlaces.

Por otra parte, según señala M. Ángeles Serrano, también investigadora de la UB, «la similitud es un concepto más difícil de codificar pero tiene que ver con la afinidad entre los nodos». Así, nodos que son similares tienen más probabilidad de conectarse, aunque no sean populares. Este fenómeno, conocido como homofilia en las ciencias sociales, se ha observado en muchas redes reales. Por ejemplo, personas con la misma afición tienen tendencia a conectarse. «El mecanismo que hemos desarrollado hace que los nuevos nodos que se incorporan a la red elijan preferentemente conexiones con nodos populares o bien con aquellos que de algún modo sean cercanos o similares», apunta Serrano.

En el trabajo, llevado a cabo en en colaboración con el investigador Fragkiskos Papadopoulos de la Universidad de Chipre y los los investigadores Maksim Kitsak y Dmitri Krioukov de la Universidad de California, el modelo se ha aplicado a tres redes diferentes: una tecnológica (Internet), una red social (web of trust) y un sistema biológico (la red metabólica de Escherichia coli). En los tres casos, el modelo permite describir de manera precisa la evolución a gran escala de la red y predice con una alta precisión la probabilidad de nuevos enlaces.

Referencia del artículo:

Fragkiskos Papadopoulos, Maksim Kitsak, M. Àngels Serrano, Marián Boguñá i Dmitri Krioukov. «Popularity versus similarity in growing networks». Nature, 12 de septiembre de 2012. DOI: 10.1038/nature11459

Imagen: Los investigadores de la Universidad de Barcelona Marián Boguñá i M. Àngels Serrano.